
International Journal of Computer Trends and Technology Volume 72 Issue 11, 17-22, November 2024

ISSN: 2231–2803 / https://doi.org/10.14445/22312803/IJCTT-V72I11P103 © 2024 Seventh Sense Research Group®

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Original Article

Enhancing Microservice Resiliency and Reliability on

Kubernetes with Istio: A Site Reliability Engineering

Perspective

Mourya Chigurupati1, Ashwini Jagtap2

1,2Independent Researcher, Austin, TX, USA.

1Corresponding Author : Mourya.ch@outlook.com

Received: 18 September 2024 Revised: 21 October 2024 Accepted: 10 November 2024 Published: 29 November 2024

Abstract - The adoption of microservice architectures has increased the complexity of ensuring service resiliency and reliability

at scale. Kubernetes has become the platform of choice for hosting microservices, and service meshes like Istio offer a powerful

solution for managing inter-service communication. While Istio's traffic management and security features are widely

recognized, this paper explores its lesser-known capabilities, such as distributed tracing, fault injection, and circuit breakers,

which are critical for Site Reliability Engineering (SRE). These features enable SRE teams to enhance system observability,

proactively test service failures, and prevent cascading issues, ultimately improving the reliability and resiliency of microservices

in production environments. In particular, Istio’s distributed tracing facilitates precise monitoring of service latencies, while

fault injection and circuit breakers provide controlled experimentation to test system limits under stress. Integrating Istio into

SRE practices allows for building more robust, fault-tolerant, and resilient Kubernetes-based systems, ensuring improved

performance and reduced downtime in dynamic microservice environments.

Keywords - Microservices, Istio, Kubernetes, Service Mesh, Site Reliability Engineering (SRE).

1. Introduction
Service mesh was introduced to provide an abstract layer

that handles all service-to-service communication and

controls traffic flow. Eventually, many open-source service

mesh-based technologies started offering integrations for

Kubernetes, which is still popular for hosting microservices.

The initial service mesh tools were focused on offering load-

balancing capabilities that would ideally act as a gateway for

ingress and egress traffic and control traffic flow to different

services. In parallel, as the adoption of microservices grew,

the need for features like distributed tracing, fault injection,

and circuit breakers amplified. Despite the rapid adoption of

Kubernetes for microservice management, there are notable

limitations in ensuring system resiliency and reliability,

particularly for large-scale applications. While effective for

load balancing and traffic control, traditional service

management tools fall short in providing mechanisms for

controlled fault tolerance and precise observability across

complex service interactions. This creates a critical gap in Site

Reliability Engineering (SRE) practices, where identifying,

testing, and mitigating potential failures is essential for

maintaining high availability and robust performance. While

several studies examine Istio’s traffic management features,

limited research explores its potential for improving

microservice resiliency, particularly through SRE-focused

tools like distributed tracing, fault injection, and circuit

breakers. For example, Xie and Govardhan (2020) discuss

Kubernetes-based load balancing but omit failure

management and distributed tracing, which are essential for

building resilient architectures in dynamic environments [1].

Similarly, Song et al. (2019) presents a tracing system

integrated with Istio but do not address fault injection or

circuit breaking as essential reliability mechanisms [2]. This

research, therefore, builds upon existing work by addressing

these underutilized aspects of Istio's capabilities,

demonstrating their role in enhancing service resiliency and

reliability within Kubernetes-managed microservices.

Existing solutions are primarily designed to manage service

communication but often lack robust support for tracing

service dependencies, testing fault scenarios, and

implementing circuit-breaking measures to contain failures.

Istio, with its advanced yet underutilized features such as

distributed tracing, fault injection, and circuit breakers, offers

a unique approach to address these challenges. This paper

specifically explores how these capabilities can bridge the gap

in current SRE practices, enhancing observability, failure

testing, and fault tolerance within Kubernetes-managed

microservices. Distributed tracing provides a method to track

an incoming application request as it flows from one service

to another and stitches all the actions and responses each

http://www.internationaljournalssrg.org/
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:1Mourya.ch@outlook.com

Mourya Chigurupati & Ashwini Jagtap / IJCTT, 72(11), 17-22, 2024

18

service takes to visually represent a timeline. It helps

understand latency and performance issues on APIs, database

calls, etc. Fault injection is a methodology in which faults or

errors are introduced into a system to test for potential failures.

These errors could be related to overloading your pods or

services, introducing delays into services, etc. [3]. Circuit

breaker is an architectural design pattern where threshold

limits are set on a service or a pod to avoid having a cascading

effect of failures on a Kubernetes cluster. The open-source

community saw a wide range of tools show up in the market

serving these features for Kubernetes [4].

Istio is an open-source service mesh technology based on

envoy architecture and became popular for its traffic

management capabilities on Kubernetes clusters [5]. Many

leveraged its mutual TLS (mTLS) encryption capabilities,

requiring minimal configuration. However, Istio has many

other capabilities that haven’t been adopted as widely as the

load balancing capabilities. Istio can manage authentication

and authorization of requests on every service with the help of

certificates, using its sidecars for distributed tracing, injecting

faults to test the services, and setting up delays and limits to

act as a circuit breaker.

2. Istio Features
The scope of this paper is limited to exploring three main

features of Istio which are not widely adopted. These features

are explored in three sections – Distributed tracing, Fault

injection, and Circuit breakers.

2.1. Distributed Tracing

The scope of this paper is limited to exploring three main

features of Istio which are not widely adopted. These features

are explored in three sections – Distributed tracing, Fault

injection, and Circuit breakers. The microservice architecture

has the web, app, and database layers hosted as multiple

individual services running on a Kubernetes cluster. A simple

request from an end user goes through multiple hops, API calls

to different services, and several database calls before

responding to the end user’s request. As the number of

services, replica sets, or pod count increases, tracking all the

hops a request makes becomes challenging. This adds

additional complexity in identifying any service's

performance bottlenecks or latency issues.

Distributed tracing addresses this complexity by

providing a mechanism to track timelines and actions from

when a request is generated at the front end until a response is

returned [6]. Distributed tracing helps mesh operators

determine the service dependencies and latency sources within

the service mesh. Istio has distributed tracing capabilities,

making it easier to trace requests with the help of envoy

sidecars deployed alongside every application pod. The

proxies do not require additional configuration to generate

traces, as all requests between services or pods go through the

sidecars. However, Istio expects applications to send context,

typically consisting of trace headers for every incoming and

outgoing request. Two scenarios are outlined to illustrate this,

leveraging Zipkin, which imposes the lowest runtime

overhead when running alongside an application and is an

ideal choice for integration with Istio [7].

2.1.1. Scenario A: Application with Zipkin and no Istio

As shown in Figure 1, application services running on a

Kubernetes cluster need to leverage SDK to generate traces

and send them to the collector. This requires changes to the

source code to incorporate SDK with each service. Upon

receiving the traces, the collector compiles and stitches the

data to provide a visualization of the entire request.

Fig. 1 Application with Zipkin and without Istio

Microservice A

with SDK

configuration

Microservice B

with SDK

configuration

Microservice C

with SDK

configuration

Zipkin Collector

Traces

Traces Dashboard

Kubernetes

Cluster

Traces

Mourya Chigurupati & Ashwini Jagtap / IJCTT, 72(11), 17-22, 2024

19

Fig. 2 Application with Zipkin and Istio

2.1.2. Scenario B: Application with Zipkin and Istio

As shown in Figure 2, sidecars are injected to enable

Istio’s distributed tracing capability. The envoy sidecars send

trace information directly to Zipkin rather than requiring

applications to send trace information. Envoy is responsible

for generating request IDs and headers as they flow through

the sidecars. Trace spans, along with response times for each

request, are generated and sent to Zipkin by Envoy.

2.2. Fault Injection

All the microservices running on a Kubernetes cluster are

well-structured and follow different architectural patterns.

They are configured with network policies to withstand

service disruptions, pod failures, node failures, and more.

Traditional resiliency measures in Kubernetes often focus on

redundancy and load balancing but may lack the proactive

fault tolerance testing required in large-scale production

environments. While existing methods address basic fault

tolerance, they often fail to evaluate complex failure scenarios

that could cause cascading service outages, particularly in

microservice architectures. Identifying potential failure points

and delays is crucial to ensure resiliency [8]. Resiliency as a

target ensures that failures in one part of the application do not

lead to subsequent failures in other parts. Fault injection was

introduced to test resiliency before taking an application to

production, and Istio has the capability to inject faults into the

system to assess resiliency in ways that traditional methods do

not. Fault injection, one of Istio's most underrated features,

can test a service mesh's capacity to tolerate service failures

pod and node failures and prevent cascading failures across

services.

This approach differs from standard fault tolerance by

offering a more granular method of testing failure points,

allowing Site Reliability Engineering (SRE) teams to simulate

specific failure scenarios and evaluate system responses

before real issues arise. Istio can inject faults or errors at the

application layer; in this sample scenario, two types of faults

that Istio supports are injected:

• Delays—These errors help understand potential timeout

issues due to increased network latency or a target service

being occupied with other requests in the queue.

• Aborts—These errors help understand potential target

service failures by returning HTTP error codes or TCP

failures.

As illustrated in Figure 3, a service request typically hops

from Service A to Service B and Service B to Service C. To

test HTTP delay fault injection, a ten-second delay was

introduced between Service B and Service C. Service B is

hard-coded to have a fifteen-second connection timeout if no

response is received from Service C.

Fig. 3 Fault injection experiment design

Microservice

A with Istio

configuration

Microservice B

with Istio

configuration

Microservice C

with Istio

configuration

Zipkin Collector

Traces

Traces Dashboard

Kubernetes

Cluster

Traces

12s connection

timeout limit

15s connection

timeout limit

Microservice A

with Istio

configuration

Microservice C

with Istio

configuration

10s Delay

Mourya Chigurupati & Ashwini Jagtap / IJCTT, 72(11), 17-22, 2024

20

Additionally, Service A is hardcoded with a twelve-

second connection timeout to serve a response for the

incoming request. In this scenario, introducing a fault leads to

a connection timeout at Service A. Service B can obtain a

response from Service C within the timeout period of fifteen

seconds, including the ten-second delay fault. However,

Service A could not wait more than twelve seconds to obtain

a response from Service B. This scenario demonstrates Istio’s

advanced fault injection capabilities, showcasing how SRE

teams can simulate and detect potential HTTP failures

occurring in microservices. This proactive fault injection

approach by Istio helps prevent cascading issues by

highlighting specific failure points, an advancement over

conventional fault-tolerance techniques.

2.3. Circuit Breakers

Microservices on Kubernetes clusters are deployed as

containers running on pods and pods running on nodes. Each

service could have multiple hosts or replica sets to ensure

application resiliency. It is common for a host to fail due to

request overloads, network issues, etc., making it important

for other services to recognize the host’s failure and cease

sending further requests. Any failure to acknowledge the state

of the target host can have a cascading effect on other services

as they continue attempting to route requests and await a

response from the failed host [9].

This situation leads to exponentially increasing delays.

Circuit breakers were introduced to address these concerns

and create resilient microservice-based applications. Real-

world implementations of circuit breakers in microservices

environments highlight their practical value. For instance, e-

commerce platforms use circuit breakers to handle surges in

traffic during events like sales, where a sudden influx of user

requests can overwhelm certain services. By implementing

circuit breakers, these platforms prevent a single service

failure from impacting the entire system, ensuring a smooth

user experience. Similarly, financial institutions apply circuit

breakers to maintain service stability when there are spikes in

transaction requests, especially during peak trading hours,

preventing delays or outages across interconnected services.

Fig. 4 Circuit breakers istio configuration

As shown in Figure 4, Istio has circuit-breaking

capabilities that can be leveraged to limit the number of calls

made to different hosts for a service. These limits can apply to

a host's number of concurrent connections. When the limit is

reached, the circuit breaker "trips," stopping further

connections to the host [10]. In this circuit-breaking scenario,

limits on concurrent connections are set, and a load-testing

client is used to send multiple requests simultaneously.

A destination rule is configured to set limits on the

number of concurrent connections a service host can handle.

The ‘maxconnection’ and ‘httpmax-pendingrequests’ rules

specify the limits for the host. When the load-testing client

sends multiple requests and the limit on concurrent

connections is reached, the Istio circuit breaker trips,

eventually leading to timeouts.

3. Performance Considerations and

Comparative Analysis
As microservice architectures become more complex,

optimizing performance, security, and resiliency requires a

deeper integration of advanced tools like Istio. This section

explores key strategies for enhancing microservice stability

using Istio’s capabilities, benchmarking performance impacts,

and embedding Istio features into Site Reliability Engineering

(SRE) workflows. By comparing Istio with other service

meshes and examining emerging trends, this analysis provides

a comprehensive view of how Istio can support robust, secure,

and adaptable microservices in dynamic environments.

3.1. Benchmarking Performance with and without Istio

Features

Understanding the performance impact of Istio’s features,

particularly under varying loads, is essential for determining

the trade-offs between resiliency and resource utilization. This

benchmarking analysis examines system performance with

and without Istio’s distributed tracing, fault injection, and

circuit breaker features across different load scenarios. Tests

simulate production-scale traffic patterns, measuring latency,

response times, and failure rates. Initial findings suggest that,

while Istio features add slight overhead, their proactive

approach to managing resiliency ultimately enhances the

system’s stability under high load conditions. These

benchmarks demonstrate that enabling Istio’s advanced

features can significantly reduce the risk of cascading failures

during traffic spikes, providing valuable insights for Site

Reliability Engineering (SRE) teams focused on optimizing

performance and reliability.

3.2. Incorporating Istio Features into Existing SRE

Workflows

Integrating Istio with existing SRE workflows,

particularly in Continuous Integration and Continuous

Deployment (CI/CD) pipelines, enhances the overall

reliability of microservices by automating resiliency and

Mourya Chigurupati & Ashwini Jagtap / IJCTT, 72(11), 17-22, 2024

21

observability tests. With Istio’s fault injection capabilities, for

instance, SRE teams can simulate failures and latency spikes

during the staging phase, identifying weaknesses before

deployment. CI/CD workflows can incorporate Istio-enabled

distributed tracing to automatically monitor service latency,

and circuit breakers can be configured to handle unexpected

loads during production rollouts. This integration supports a

shift-left approach in testing, enabling teams to address

potential issues earlier in the development cycle. By

embedding Istio into CI/CD pipelines, organizations can

iteratively improve their microservices’ resilience, reducing

deployment risk and enhancing service stability.

3.3. Security Implications and Best Practices with Istio

As a service mesh, Istio provides powerful security

mechanisms, such as mutual TLS (mTLS) for secure

communication between services, role-based access control,

and policy enforcement. These features ensure that

microservices are protected against unauthorized access and

data breaches. However, Istio’s security features require

careful configuration and monitoring to prevent

misconfigurations that could expose services. Best practices

for securing microservices with Istio include enforcing strict

mTLS policies across all services, periodically reviewing

access control rules, and employing secure certificate

management strategies. This security framework not only

safeguards individual microservices but also strengthens the

resilience of the entire application environment, making Istio

a preferred choice for organizations prioritizing security.

3.4. Comparative Analysis with Other Service Mesh Options

While Istio is a feature-rich service mesh, comparing it

with other service meshes, such as Linkerd, provides valuable

context for its strengths and weaknesses. Linkerd, for

example, emphasizes simplicity and lightweight performance,

making it an attractive choice for small-scale deployments

where minimal overhead is a priority. In contrast, Istio offers

more extensive capabilities for traffic management, security,

and observability, making it ideal for complex, large-scale

systems. However, Istio’s broader functionality can result in

higher resource consumption and complexity in configuration.

This comparison helps teams select a service mesh solution

based on factors such as deployment scale, resource

constraints, and specific resiliency and security needs.

4. Conclusion and Future Scope of Research
Istio’s advanced features—distributed tracing, fault

injection, and circuit breakers—are pivotal in enhancing the

reliability and resiliency of microservices hosted on

Kubernetes. As demonstrated throughout this paper, these

capabilities are essential for modern Site Reliability

Engineering (SRE) practices, providing the tools necessary to

monitor service health, preemptively test failure scenarios,

and prevent cascading service disruptions. Distributed tracing,

in particular, strengthens observability, helping SRE teams

diagnose latency bottlenecks and pinpoint performance issues

across complex service interactions.

 Fault injection allows for controlled failure testing in safe

environments, enabling teams to understand how services

respond under stress and optimize resiliency before failures

impact production. As part of Istio’s service mesh capabilities,

circuit breakers act as safety mechanisms that prevent minor

failures from escalating into large-scale outages. Through

these SRE-focused approaches, Istio not only simplifies

service management but also promotes a proactive mindset

towards reliability and system uptime, making it a critical tool

for enterprises operating large-scale microservice

environments. The case studies highlighted how integrating

Istio's features into existing Kubernetes infrastructures can

enhance observability and fault tolerance, ultimately

improving operational efficiency and reducing downtime. The

potential for future research lies in exploring how Istio can

further evolve to support increasingly complex SRE use cases.

One area ripe for development is enhancing Istio's capabilities

for real-time automated fault detection and remediation,

leveraging machine learning to predict failures before they

occur. Another important avenue is improving the integration

of Istio with other observability tools, enabling seamless

cross-platform visibility across distributed systems.

Furthermore, as microservice architectures grow more

complex, investigating how Istio’s fault injection and circuit

breaker features can be tailored to handle more sophisticated

failure patterns would benefit both SRE and DevOps teams.

The future of SRE also demands more seamless multi-cloud

and hybrid cloud support within Istio, particularly for

enterprises managing services across different cloud

providers. Finally, research should focus on Istio’s role in

enhancing resiliency in edge computing and IoT

environments, where network latency and failure points are

more unpredictable, and ensure that the reliability principles

seen in data centers can be extended to highly distributed

systems. These developments would significantly strengthen

the ability of SRE teams to maintain high levels of

performance, even in the most challenging microservice

environments.

References

[1] Xiaojing XIE, and Shyam S. Govardhan, “A Service Mesh-Based Load Balancing and Task Scheduling System for Deep Learning

Applications,” 2020 20th IEEE/ACM International Symposium on Cluster, Cloud and Internet Computing (CCGRID), Melbourne, VIC,

Australia, pp. 843-849, 2020. [CrossRef] [Google Scholar] [Publisher Link]

https://doi.org/10.1109/CCGrid49817.2020.00009
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+Service+Mesh-Based+Load+Balancing+and+Task+Scheduling+System+for+Deep+Learning+Applications&btnG=
https://ieeexplore.ieee.org/abstract/document/9139676

Mourya Chigurupati & Ashwini Jagtap / IJCTT, 72(11), 17-22, 2024

22

[2] Meina Song, Qingyang Liu, E. Haihong, “A Mirco-Service Tracing System Based on Istio and Kubernetes,” 2019 IEEE 10th International

Conference on Software Engineering and Service Science (ICSESS), Beijing, China, pp. 613-616, 2019. [CrossRef] [Google Scholar]

[Publisher Link]

[3] Domenico Cotroneo, Luigi De Simone, and Roberto Natella, “ThorFI: A Novel Approach for Network Fault Injection as a

Service,” Journal of Network and Computer Applications, vol. 201, 2022. [CrossRef] [Google Scholar] [Publisher Link]

[4] Jacopo Soldani, Marco Marinò, and Antonio Brogi, “Semi-Automated Smell Resolution in Kubernetes-Deployed Microservices,”

Proceedings of the 13th International Conference on Cloud Computing and Services Science, Prague, Czech Republic, vol. 1, pp. 34-45,

2023. [CrossRef] [Google Scholar] [Publisher Link]

[5] Lars Larsson et al., “Impact of ETCD Deployment on Kubernetes, Istio, and Application Performance,” Software: Practice and

Experience, vol. 50, no. 10, pp. 1986-2007, 2020. [CrossRef] [Google Scholar] [Publisher Link]

[6] Rafi Abbel Mohammad, and Achmad Imam Kistijantoro, “Development of Performance Regression Analysis Tool using Distributed

Tracing on Microservice-Based Applications,” 2022 9th International Conference on Advanced Informatics: Concepts, Theory and

Applications (ICAICTA), Tokoname, Japan, pp. 1-6, 2022. [CrossRef] [Google Scholar] [Publisher Link]

[7] Christina Eder, Stefan Winzinger, and Robin Lichtenthäler, “A Comparison of Distributed Tracing Tools in Serverless

Applications,” 2023 IEEE International Conference on Service-Oriented System Engineering (SOSE), Athens, Greece, pp. 98-105, 2023.

[CrossRef] [Google Scholar] [Publisher Link]

[8] José Flora et al., “A Study on the Aging and Fault Tolerance of Microservices in Kubernetes,” IEEE Access, vol. 10, pp. 132786-132799,

2022. [CrossRef] [Google Scholar] [Publisher Link]

[9] Lalita J. Jagadeesan, and Veena B. Mendiratta, “When Failure is (Not) an Option: Reliability Models for Microservices

Architectures,” 2020 IEEE International Symposium on Software Reliability Engineering Workshops (ISSREW), Coimbra, Portugal, pp.

19-24, 2020. [CrossRef] [Google Scholar] [Publisher Link]

[10] Mohammad Reza Saleh Sedghpour, Cristian Klein, and J. Tordsson, “Service Mesh Circuit Breaker: From Panic Button to Performance

Management Tool,” Proceedings of the 1st Workshop on High Availability and Observability of Cloud Systems, New York, NY, USA, pp.

4-10, 2021. [CrossRef] [Google Scholar] [Publisher Link]

https://doi.org/10.1109/ICSESS47205.2019.9040783
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+Mirco-Service+Tracing+System+Based+on+Istio+and+Kubernetes&btnG=
https://ieeexplore.ieee.org/abstract/document/9040783
https://doi.org/10.1016/j.jnca.2022.103334
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=ThorFI%3A+A+Novel+Approach+for+Network+Fault+Injection+as+a+Service&btnG=
https://www.sciencedirect.com/science/article/abs/pii/S1084804522000030
https://doi.org/10.5220/0011845500003488
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Semi-Automated+Smell+Resolution+in+Kubernetes-Deployed+Microservices&btnG=
https://www.scitepress.org/Link.aspx?doi=10.5220/0011845500003488
https://doi.org/10.1002/spe.2885
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Impact+of+etcd+deployment+on+Kubernetes%2C+Istio%2C+and+application+performance&btnG=
https://onlinelibrary.wiley.com/doi/full/10.1002/spe.2885
https://doi.org/10.1109/ICAICTA56449.2022.9932918
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Development+of+Performance+Regression+Analysis+Tool+using+Distributed+Tracing+on+Microservice-Based+Applications&btnG=
https://ieeexplore.ieee.org/abstract/document/9932918
https://doi.org/10.1109/SOSE58276.2023.00018
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+Comparison+of+Distributed+Tracing+Tools+in+Serverless+Applications&btnG=
https://ieeexplore.ieee.org/abstract/document/10254754
https://doi.org/10.1109/ACCESS.2022.3231191
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+Study+on+the+Aging+and+Fault+Tolerance+of+Microservices+in+Kubernetes&btnG=
https://ieeexplore.ieee.org/abstract/document/9996355
https://doi.org/10.1109/ISSREW51248.2020.00031
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=When+Failure+is+%28Not%29+an+Option%3A+Reliability+Models+for+Microservices+Architectures&btnG=
https://ieeexplore.ieee.org/abstract/document/9307715
https://doi.org/10.1145/3447851.3458740
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Service+Mesh+Circuit+Breaker%3A+From+Panic+Button+to+Performance+Management+Tool&btnG=
https://dl.acm.org/doi/abs/10.1145/3447851.3458740

